ID and 2D experiments set up by NMR

by 林永峰(Y.F.) GRC NMR Core Facility

Experiments set up in GRC

- ID IH NMR
- ID ¹³C NMR
- * 2D homonuclear NMR
- * 2D heteronuclear NMR
- Measurement of coupling constants

1. 1D¹H NMR

★ Solvent Suppression (溶劑峰壓制實驗) IGRC_ID_IH-zgcppr Multiple Solvent Suppression

★ Selective Excitation (選擇性激發實驗) sel_COSY sel_TOCSY sel_NOESY → Button NMR set up sel_ROESY

🔆 Anisotropy effect

 $\delta_{ring} \rightarrow 8.14-8.64 \text{ ppm}$ $\delta_{Me} \rightarrow -4.25 \text{ ppm}$

δ_{ring} → 7.27-6.95 ppmδ_{Me} → -0.51 ppm

1.3 Multiple Solvent Suppression

- ※利用不同的頻道進行溶劑訊號之壓制(一般實驗)
 > <u>lclprf2(2)</u>, <u>lclprft(3)</u>, <u>lclpnf2(2)</u>, <u>lclpnft(3)</u>, <u>lclpnewfd(2)</u>(括號內為壓制溶劑訊號之數目)
- ※利用shape pulse進行溶劑訊號之壓制(PS系列)
 ➢ zgps, lclpnps, lclpncwps
- ※利用WET scheme進行溶劑訊號之壓制(WET系列)
 ➢ wet, wetdc, wetdw

1.5 ID Selective Excitation

✤ COSY, TOCSY, NOESY, ROESY四種實驗

🔆 針對特定peak, 觀察其相關性

★ 減少實驗維度、將目標凸顯、簡化問題、減少實驗時間

🔆 方便低濃度樣品進行測定

☀ 可使用Button selective NMR軟體進行實驗

1.5.1 ID Selective COSY Button NMR set up

1.5.2 ID Selective TOCSY Button NMR set up

2. ID ¹³C NMR

★ Distortionless Enhancement by Polarization Transfer (區分碳的級數) IGRC_1D_DPET45 IGRC_1D_DEPT90 IGRC_1D_DEPT135

2.1 ¹³C NMR

¹⁸℃光譜特性

★ 因¹³℃自然含量低,則¹³℃-¹³℃彼此間偶合可忽略

★ ¹³C會受到周圍氫原子的影響而產生分裂

🔆 其分裂較為複雜,而造成光譜難以判斷

★ 受到直接接於碳上的氫原子之分裂較為明顯,並符合 2NⅠ+Ⅰ規則

☀ 訊號亦會因分裂造成強度下降,一般以去偶合 (decoupling)方式進行實驗

IGRC_ID_I3C-without decouple

2.4 Inverse Gated Decoupling IGRC_1D_13Cint

2.5.1 DEPT

CH₂

Distortionless Enhancement by Polarization Transfer

IGRC_ID_DEPT45 IGRC_ID_DEPT90 IGRC_ID_DEPT135

-	$\square \square $				
			45°	90°	135°
lty		СН	+	+	+
	45° 90° 135° 180°	CH ₂	+	×	-
		CH ₃	+	×	+

3. 2D homonuclear NMR

DQF-COSY

IGRC_2D_COSY-DQF IGRC_2D_COSY-DQF-suppressin

TOCSY

IGRC_2D_TOCSY_dipsi IGRC_2D_TOCSY-mlev IGRC_2D_TOCSY-mlevg IGRC_2D_TOCSY-suppression *** NOESY IGRC 2D NOESY IGRC_2D_NOESYg** IGRC_2D_NOESY-suppression

* ROESY

IGRC_2D_ROESY IGRC_2D_ROESYg IGRC 2D ROESY-suppression

3.1 2D homonuclear COSY

3.2 2D homonuclear TOCSY

★ TOCSY (Total Correlation Spectroscopy) 獲得所有J偶合關係

3.3 2D homonuclear NOESY/ROESY

* NOESY

(Nuclear Overhauser Effect Spectroscopy)

* ROESY

(Rotating-frame Overhauser Effect SpectroscopY) 獲得空間中之關係, < 5Å

NOESY與ROESY

3.4 2D homonuclear ¹³C

*** INADEQUATE**

(Incredible Natural Abundance Double Quantum Transfer Experiment Spectroscopy)

獲得^IJ_{C-C}之關係

4. 2D heteronuclear NMR

IGRC_2D_HSQC IGRC_2D_HSQC-echo IGRC_2D_HSQC-suppression

4.1 2D heteronuclear NMR

4.2 2D heteronuclear NMR

★ HSQC (Heteronuclear Single Quantum Correlation) 獲得¹J_{H-X}之關係

4.3 2D heteronuclear NMR

4.4 2D heteronuclear NMR

* HMBC

(Heteronuclear Multiple Bond Correlation) 獲得 J_{H-X} 之關係 $(n \ge 2)$

* CIGAR-HMBC

(Constant Time Inverse-detected Gradient Accordion Rescaled-HMBC) 獲得"J_{H-X}之關係 (n ≥ 2),可調整偵測長距離之H-X偶合常數

5. Measurement of coupling constants

Heteronuclear J-resolved

IGRC_2D_HJres IGRC_2D_sel.HJres IGRC_2D_no decouple HSQC IGRC_2D_HETLOC IGRC_2D_HSQC-HECADE IGRC_2D_ps-HMBC IGRC_2D_G-BIRD-HSQMBC

5.1 Measurement of coupling constants

* homonuclear J-resolved

獲得JH-H之偶合常數

5.2 Measurement of coupling constants

* heteronuclear J-resolved

獲得JC-H之偶合常數

5.3 Measurement of coupling constants

5.4 Measurement of coupling constants

★ HETLOC (HETeronuclear LOng-range Couplings) 獲得"J_{H-HC}之偶合常數(n ≥ 1)

IGRC_2D_HETLOC

5.5 Measurement of coupling constants

* HSQC-HECADE

(HSQC-HEteronuclear Couplings from ASSCI-Domain Experiments with E.COSY-Type Cross Peaks)

獲得"J_{H-HC}之偶合常數(n≥1)

HSQC-HECADE

1GRC_2D_HSQC-HECADE

6. DOSY (Diffusion-Ordered SpectrocopY) (擴散排序光譜)

🔆 DOSY experiment: 區分混合物中物種數目

☀ 利用混合物中各成分之擴散係數不同(溶液中的移動速度)進行區分

🔆 擴散係數與分子之大小、形狀、環境溫度與溶劑之黏度有關

🔆 藉由擴散實驗區分在光譜中各訊號是否分屬於不同的分子

7. Other useful experiments

Selective - Selective Excitation

sel_COSY - NOESY sel_TOCSY - TOCSY sel_TOCSY - NOESY sel_TOCSY - ROESY sel_NOESY - TOCSY sel_ROESY - TOCSY sel_NOESY - NOESY

FIG. 5. Illustration of the 1D ge-TOCSY-NOESY technique on polysaccharide **3**. (a) ¹H spectrum of **3**, NT = 4; (b) 1D ge-TOCSY spectrum of **3**, NT = 8; H-1c was selectively excited by a 57 ms half-Gaussian pulse, the mixing time was 57.5 ms, and the δ delay was 28.8 ms; (c) 1D ge-TOCSY-NOESY spectrum (NT = 64) of **3** acquired using the pulse sequence of Fig. 1e. Selective pulses preceding the TOCSY and the NOESY periods were half-Gaussian pulses of 57 and 43.5 ms applied to H-1c and H-3c protons, respectively. Mixing times were 57.5 ms for the TOCSY and 250 ms for the NOESY transfer; the δ delay was 28.8 ms. A partial structure of **3** is given in the inset with TOCSY and NOESY pathways indicated by solid and dotted lines, respectively.

Uhrin, D.; Barlow, P. N. J. Magn. Reson. 1997, 126, 248-255.

FIG. 6. Illustration of the 1D ge-NOESY-TOCSY technique on compound 3. (a) ¹H spectrum of 3, NT = 4; (b) 1D ge-NOESY spectrum of 3 (NT = 16); H-1d was selectively excited by a 57 ms half-Gaussian pulse; the mixing time was 250 ms. (c) 1D ge-NOESY-TOCSY spectrum (NT = 128) of 3 acquired using the pulse sequence of Fig. 1f. Selective pulses preceding the TOCSY and the NOESY period were half-Gaussian pulses of 57 and 43.5 ms applied to H-1d and H-5d protons, respectively. Mixing times were 250 ms for the NOESY and 48 ms for the TOCSY transfer; the δ delay was 24 ms. A partial structure of 3 is given in the inset with NOESY and TOCSY transfers indicated by dotted and solid lines, respectively.

Uhrin, D.; Barlow, P. N. J. Magn. Reson. 1997, 126, 248-255.

Reference :

🔆 NMR Guide

- The Hebrew University of Jerusalem (http://chem.ch.huji.ac.il/nmr)
- 🔅 Michigan State University (http://www.cem.msu.edu/~reusch/VirtualText /Spectrpy/nmr/nmrl.htm)

Department of Chemistry, Queen's University (http://www.chem.queensu.ca/FACILITIES/ NMR/nmr/webcourse/Flash/HX-coupling.swf)

核種	自旋量子數	化學位移範圍	標準樣品
ıH	1/2	15 ~ -2	Si(CH3)4
6Li	1	5 ~ -10	LiCl in H2O
7Li	3/2	5 ~ -10	LiCl in H2O
13 C	1/2	250 ~ -20	Si(CH3)4
15 N	1/2	1200 ~ -500	CH3NO2
17 O	5/2	1800 ~ -100	H2O
19 F	1/2	100 ~ -300	CFC13
23 N a	3/2	10 ~ -80	NaCl in H2O
27 A l	5/2	300 ~-300	[Al(H2O)6]3+
29 Si	1/2	100 ~ -400	Si(CH3)4
31 P	1/2	500 ~ -500	H ₃ PO ₄

常用原子核的化學位移範圍值及其標準樣品

ACKNOWLEDGEMENTS

★ 中研院基因體中心 張七鳳博士

☀ 磊葳科技 吳英彦 博士

(資料的提供)(技術的支援)(知識的分享)